skip to main content


Search for: All records

Editors contains: "Singh, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Singh, A (Ed.)
    Robust optimization has been widely used in nowadays data science, especially in adversarial training. However, little research has been done to quantify how robust optimization changes the optimizers and the prediction losses comparing to standard training. In this paper, inspired by the influence function in robust statistics, we introduce the Adversarial Influence Function (AIF) as a tool to investigate the solution produced by robust optimization. The proposed AIF enjoys a closed-form and can be calculated efficiently. To illustrate the usage of AIF, we apply it to study model sensitivity — a quantity defined to capture the change of prediction losses on the natural data after implementing robust optimization. We use AIF to analyze how model complexity and randomized smoothing affect the model sensitivity with respect to specific models. We further derive AIF for kernel regressions, with a particular application to neural tangent kernels, and experimentally demonstrate the effectiveness of the proposed AIF. Lastly, the theories of AIF will be extended to distributional robust optimization. 
    more » « less
  2. III, H.D. ; Singh, A. (Ed.)
    We develop amortized population Gibbs (APG) samplers, a class of scalable methods that frame structured variational inference as adaptive importance sampling. APG samplers construct high-dimensional proposals by iterating over updates to lower-dimensional blocks of variables. We train each conditional proposal by minimizing the inclusive KL divergence with respect to the conditional posterior. To appropriately account for the size of the input data, we develop a new parameterization in terms of neural sufficient statistics. Experiments show that APG samplers can be used to train highly-structured deep generative models in an unsupervised manner, and achieve substantial improvements in inference accuracy relative to standard autoencoding variational methods. 
    more » « less
  3. Moore, S ; Stamper, J ; Cao, T ; Liu, Z ; Hu, X ; Lu, Y ; Liang, J ; Khosravi, H ; Denny, P ; Singh, A (Ed.)
    Multiple choice questions are traditionally expensive to produce. Recent advances in large language models (LLMs) have led to fine-tuned LLMs that generate questions competitive with human-authored questions. However, the relative capabilities of ChatGPT-family models have not yet been established for this task. We present a carefully-controlled human evaluation of three conditions: a fine-tuned, augmented version of Macaw, instruction-tuned Bing Chat with zero-shot prompting, and humanauthored questions from a college science textbook. Our results indicate that on six of seven measures tested, both LLM’s performance was not significantly different from human performance. Analysis of LLM errors further suggests that Macaw and Bing Chat have different failure modes for this task: Macaw tends to repeat answer options whereas Bing Chat tends to not include the specified answer in the answer options. For Macaw, removing error items from analysis results in performance on par with humans for all metrics; for Bing Chat, removing error items improves performance but does not reach human-level performance. 
    more » « less
    Free, publicly-accessible full text available September 7, 2024
  4. Daumé, H ; Singh, A (Ed.)
    An acknowledged weakness of neural networks is their vulnerability to adversarial perturbations to the inputs. To improve the robustness of these models, one of the most popular defense mechanisms is to alternatively maximize the loss over the constrained perturbations (or called adversaries) on the inputs using projected gradient ascent and minimize over weights. In this paper, we analyze the dynamics of the maximization step towards understanding the experimentally observed effectiveness of this defense mechanism. Specifically, we investigate the non-concave landscape of the adversaries for a two-layer neural network with a quadratic loss. Our main result proves that projected gradient ascent finds a local maximum of this non-concave problem in a polynomial number of iterations with high probability. To our knowledge, this is the first work that provides a convergence analysis of the first-order adversaries. Moreover, our analysis demonstrates that, in the initial phase of adversarial training, the scale of the inputs matters in the sense that a smaller input scale leads to faster convergence of adversarial training and a “more regular” landscape. Finally, we show that these theoretical findings are in excellent agreement with a series of experiments. 
    more » « less